If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8.8x+3=0
a = 1; b = -8.8; c = +3;
Δ = b2-4ac
Δ = -8.82-4·1·3
Δ = 65.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8.8)-\sqrt{65.44}}{2*1}=\frac{8.8-\sqrt{65.44}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8.8)+\sqrt{65.44}}{2*1}=\frac{8.8+\sqrt{65.44}}{2} $
| (80-x)°=9x° | | 14x=1/3 | | 3x-11=9x-3=180 | | (8x-20)(10x-11)=43 | | 12x+15-7x=5 | | 4/5=(c+12)=-8 | | n(n²-1)=336 | | (c-4=12 | | 7=r/5+9 | | -3w=9-6w | | 2q²-4q=160 | | -10y-2=68 | | z-(-1)=18.6 | | 62+7x-16+43=180 | | 6x+8=112 | | 2(c-4=12 | | 9z-5+3z=8-z | | -7+x/2=5 | | g-(-6.2)=19.39 | | -y+7=60 | | s/3=2.67 | | 637=d+75 | | -3x+6=120 | | 26=u/26 | | 50+70+6x-18=180 | | x4+4=-15 | | 3u=-18.9 | | 5-4x=-10(2/5x-1/2) | | (2x^2)/10=125 | | t/14=25 | | 11^2+21^2=c^2 | | -(10x-6)-6=-9x-9x |